

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2012

2012 Paper No. 12120 Page 1 of 10

Applying Practices from Instructor Applications to Creating Simulated

Avionics Displays

Matthew Crumley

CAE USA, Inc.

Tampa, Florida

Matthew.Crumley@caemilusa.com

ABSTRACT

For the AT-6 Light Attack and Reconnaissance aircraft, the team at CAE USA approached the challenge of making

its simulated cockpit instruments using process and technology refined by our instructor applications. Instructor

applications are typically used in modeling and simulation to control the synthetic and virtual environments used to

train students. This endeavor was different, as the Instructor Support group was used to design software for the

pilots, not only the instructors.

This paper identifies a software architecture that can enable designers—those who are more visual and less software

oriented—to gradually move into domain-specific software, like avionics. The development team embraced the

principles of agile software engineering, used a newer .NET framework, and worked with a software architecture

that has many similarities to ARINC 661, an avionics standard for designing cockpit displays.

Applying a process from a known area of design (instructor applications) to an unknown area of design (avionics)

proved its mettle when we saw these technologies coalesce into a stable, demonstrable solution. Using FalconView

as a backend map provider, a moving map was created for the avionics suite. This was possible by using the

strengths inherent in Windows Presentation Foundation (WPF), a critical part of the overall design. This paper

describes the process of developing those simulated displays. It also details how Instructor application developers

worked with avionics experts to help achieve this task, the success of which rested heavily on using the Model-

View-ViewModel software architecture.

The project was a procedural and technical success borne out of necessity. Having fewer avionics experts available

for a project does not imply diminished results. The way instructor applications are designed (and engineered) can

provide a window into a collaborative work environment—one that combines the skills of both analytic and artistic

professionals—a global force.

ABOUT THE AUTHOR

Matthew Crumley is an instructor support engineer at CAE USA, located in Tampa, Florida. He has seven years of

experience working with M&S, predominantly using Microsoft .NET technologies. Mr. Crumley develops instructor

interfaces for a wide variety of fixed and rotary wing simulators, and actively develops FalconView plug-in

software. He is also a small business proprietor with an extensive background in web design and is currently

experimenting with Apple iOS game development. Mr. Crumley received his bachelor’s degree in computer

engineering and an MBA from the University of Central Florida.

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2012

2012 Paper No. 12120 Page 2 of 10

Applying Practices from Instructor Applications to Creating Simulated

Avionics Displays

Matthew Crumley

CAE USA, Inc.

Tampa, Florida

Matthew.Crumley@caemilusa.com

THE RIGHT SEATS

There’s a global force of graphic designers and

software developers waiting to make your organization

prosper. The key, as Collins (2001) has identified, is

getting the right people on the bus, then getting them in

the right seat. It’s a powerful idea and also applies to

modeling and simulation (M&S).

Given the task of developing the desktop and unit task

trainers for the HawkerBeech AT-6, CAE USA needed

the right people in the right seats. In other words, it’s

about finding the right individual for the job.

A large part of the AT-6 development would be the

avionics software that helps students fully utilize the

cockpit. The Instructor Support group took up the task

of creating the simulated avionics displays.

As this paper will explain, the right combination of

process, personnel, and architecture were all necessary

to design a fully functional suite of simulated avionics

displays. Using Instructor Support designers proved

valuable in terms of experience, but also the

acknowledgement that all avionics software is not

exclusive to one domain of expertise. Software patterns

and practices can, and do, bring value when they are

first acknowledged and then explored in new ways.

To capitalize on a global force of knowledge workers,

the thought process of software managers is guided by

two dissimilar, yet complementary concepts: software

is both engineered, and designed. Our cockpit avionics

displays blended these two concepts and shared

software in common with instructor applications to

quickly deliver working software.

Technology Timed Right

Our Instructor Support group has experience making

traditional Windows applications with photo-real

instrument repeaters. However, the AT-6 project was

novel because its development was fully undertaken as

R&D, which was a fortuitous chance to experiment

with new code and new processes.

Our instructor applications were shifting to the newer

Microsoft .NET frameworks, which also meant new

tools. Windows Presentation Foundation (WPF), a part

of the newer .NET framework, was chosen at roughly

the same time our effort on AT-6 was starting. It

became clear from experimental WPF applications that

it had the design flexibility needed to do almost any

kind of cockpit instrument. Those cockpit instruments

would be the front line interface for student pilots

while training on the AT-6.

The short project schedule imposed on development

proved beneficial. In this case, the shift towards a more

flexible graphical user interface (GUI) design paradigm

was a great opportunity. Using WPF, a button can be

styled like any type of cockpit display and—this is

critical—it doesn't require an avionics engineer to write

its code. We exploited what was clear: the framework

enabled us to focus on avionics software and design

markup individually. Instructor Support developers

could, therefore, complement the effort typically

undertaken only by Avionics engineers.

The team also went forward using agile principles from

the Manifesto for Agile Software Development

(Cohen, 2010, p. 14):

 Individuals and interactions (over processes

and tools),

 Working software (over comprehensive

documentation),

 Customer collaboration (over contract

negotiation), and

 Responding to change (over following a

plan).

The tight schedule left little time for a formal design

process, which excluded the waterfall model. Although

the waterfall model is still embraced for many projects,

the overhead involved with a big design effort was not

viewed as necessary or advantageous with no more

than 10 people assigned to the project at a given time.

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2012

2012 Paper No. 12120 Page 3 of 10

A Desktop Trainer (DTT) prototype was required and

the schedule was set to three months for coding,

integration, and test combined. This was the duration to

achieve a working version of software that met the

basics of a script, i.e. a rote scenario to exercise the

abilities of the trainer. That meant it had to be working

quickly. That also meant we had to use in-house

experience and expertise to get the job done. Figure 1

shows the resulting DTT.

Using the Instructor Support group was also borne out

of necessity. There were few avionics engineers

available to do the entire suite of multi-function

displays (MFDs) within the allotted schedule, which

greatly reduced the pool of OpenGL expertise, the

traditional backbone of avionics displays.

Performance on graphically intensive instructor

applications showed us that WPF had the potential to

be a worthy substitute. Access to cheap and effective

tools made economic sense, and further simplified the

decision to go forward with WPF.

SOFTWARE ARCHITECTURE

The simulated displays are very similar to creating an

instructor application. As the following sections

demonstrate, the known software architecture allowed

development to advance with negligible accidental

complexity.

Model-View-ViewModel

The arrival of Microsoft’s .NET 3.0 framework in

November 2006 also marked the introduction of WPF

and a new programming pattern called Model-View-

ViewModel (MVVM). Using MVVM is optional;

however, it allows designers and software developers

to create applications that utilize numerous time-saving

features.

The idea of separating presentation from underlying

business logic is not new. The Model-View-Controller

(MVC) pattern has existed for years. The intent is the

same with MVVM, yet its implementation rests heavily

on data binding. One innovation behind WPF is the

automated mechanism that allows a graphical object to

receive updates from a data source (Data Binding

Overview, 2012). Thus, creating software becomes

Figure 1. AT-6 Desktop Trainer with Moving Map, PFD, and EICAS displays (left to right)

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2012

2012 Paper No. 12120 Page 4 of 10

more about solving the problem at hand, and less about

the plumbing and infrastructure.

Patterns are harder to formalize when the release of

new frameworks is so relentless, and MVVM is no

exception. Although there is no standard that defines

MVVM, its elements are typically described as

follows.

Model

The Model processes and abstracts the lower level data

that it receives. In effect, the model is the business

logic that makes calculations and provides information

to the GUI. The goal of its design should be to simplify

data into a form that is flexible for the GUI and

meaningful to the user. Depending upon the use of

MVVM, this may not be the lowest level for domain or

business logic. The model uses avionics data but

further refines it to prepare it for the View.

View

The View is the visible user interface on the MFD—

it’s what the pilot sees. For the AT-6 we felt the

granularity necessary to define a View should be the

equivalent to an application window.

Using Microsoft’s Extensible Application Markup

Language (XAML) the window would be styled as a

black rectangle and the adornments for the specific

display, be it a Primary Flight Display (PFD) or the

Engine Indicators and Crew Alerting System (EICAS),

would become part of that View.

Figure 2 is a short example of XAML. This is the only

markup required in the AT-6’s MFD window to

instantiate a moving map control.

<Fvw:WpfMapControl Width="330" Height="330"

 HeadingDeg="{Binding OwnshipHead}"

 LatitudeDeg="{Binding MapCenterLatDeg}"

 LongitudeDeg="{Binding MapCenterLonDeg}"

 IsMapVisible="{Binding IsMapEnabled}"

 Brightness={Binding MapBrightness}"

 SelectedMapHash="{Binding MapHash}"

 MapZoom="{Binding MapZoom}"/>

Figure 2. XAML excerpt from the Moving Map

Web developers who have used Smarty will find the

preceding markup very comforting. Smarty is a

templating engine used to separate web markup like

HTML from the business logic, which is commonly

implemented with PHP (Smarty Manual, 2012). A

sample of Smarty markup is shown in Figure 3. There

is minimal effort to learn the markup needed for WPF

if the designer’s background is in web development or

even mobile apps, like Android. Android developers

who design views are also accustomed to this XML-

like markup. There seems to be a convergence of

graphic design markup in this format.

<body bgcolor="{$smarty.config.bodyBgColor}">

 <table>

 <tr bgcolor="{$smarty.config.rowBgColor}">

 <td>First</td>

 <td>Last</td>

 <td>Address</td>

 </tr>

 </table>

</body>

Figure 3. HTML with Smarty Template

ViewModel

The ViewModel often serves as a mediator which

further translates and refines the Model’s data for the

View. It utilizes .NET data binding to allow the two

layers to communicate with only loose coupling.

Instructor System Refinements to MVVM

The definition of the ViewModel left something to be

desired. The problem with n-tier architectures is that

sometimes n-tiers are too many for a small team to

manage; the ViewModel is one of those tiers. It

exposes properties to the View for data binding but the

Model can serve the same purpose.

Our ViewModel object simply connects the View and

Model together and decides their order of initialization

and shutdown. Our ViewModel classes only vary

slightly depending upon the application, so are reused

frequently with little or no modification. This was the

same for the MFDs and our instructor applications. We

felt the value proposition of .NET data binding was

already evident between the View and Model layers. In

practice there appeared to be few benefits of adding

another layer of abstraction to the software.

Because the ViewModel is used to control the pairing

of the View and Model, it was simply a matter of

composing the pairs we wanted and putting them into a

central location – this is what we call the Controller.

Composition Over Inheritance

The controller is a useful architectural construct from

the point of view of MVVM. If the ViewModel is there

to loosely couple our View and Model, what’s left to

oversee the use of ViewModel objects?

Using a controller object acts as a clearinghouse of all

ViewModel pairs, as shown in Figure 4. In this respect,

it places greater value in object composition over

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2012

2012 Paper No. 12120 Page 5 of 10

inheritance. Designers and engineers can glance at one

class and identify the pairing of View and Model.

Data Abstraction (Server Connection to Host Computer)

S
u

b
s
c
ri
b

e

D
a

ta
 C

h
a

n
g

e
d

S
u

b
s
c
ri
b

e

D
a

ta
 C

h
a

n
g

e
d

S
u

b
s
c
ri
b

e

D
a

ta
 C

h
a

n
g

e
d

MFD

Model 2

MFD

View 2

bind

W
in

d
o

w
V

ie
w

M
o

d
e

l

MFD

Model 1

MFD

View 1

bind

W
in

d
o

w
V

ie
w

M
o

d
e

l

MFD

Model N
...

MFD

View N

bind

W
in

d
o

w
V

ie
w

M
o

d
e

l

MFD

Controller

Figure 4. Object Associations and Data Events

The Controller object, typically a singleton, creates the

ViewModel objects and responds to commands to

initialize or shut down each as needed (Figure 5).

For our instructor applications, the functional flow is

easy to follow:

1. Main entry point is called, which calls the

2. Controller’s Initialize method, which calls the

3. ViewModel Initialize method associated with

the primary window.

Controller WindowViewModel

MFD View 1

MFD Model 1

Main

new

new

Initialize

Initialize

bind

Figure 5. ViewModel Initialization

Windows are shown and closed through the life of the

application via the Controller. The windows as we

know them are altered so they have no border. They are

opened and closed to simulate the different pages of an

MFD display. The cockpit displays are like an

instructor application but with different styling applied.

The Deep Model

The discussion up to this point has centered on the

.NET application side but there’s a critical software

element without which none of the displays would

function: the Deep Model.

This is terminology we, as Instructor Support

developers, use to refer to the strict avionics-only

software model. In many simulation environments

there is a host computer that runs the real-time (60Hz)

software load. The AT-6 is no different.

The Deep Model is written in a language chosen by the

avionics engineers. It is exclusively in their domain and

their control. This is software that’s highly specific to

the device which is being simulated. Indeed, the

simulated displays are also device-specific but an artist

or designer—someone given a set of available displays

values—need not concern herself with the minutiae of

how the hardware is being simulated.

Software Tools

The installed base of Windows PCs makes the platform

an appealing target for all types of applications.

Windows is running on embedded systems, desktops,

phones, and most business have accepted the operating

system as the de facto means to enable their workforce.

Although our avionics displays are running on

Microsoft Windows, the TCP communication layer

allows the Deep Model to run on any operating system.

Assuming a project uses Windows exclusively, then for

less than $900 the tool set to develop an avionics

Model, View, and Deep Model is complete: Visual

Studio 2010 Professional for code and Expression

Studio 4 Ultimate for design. To build an AT-6 DTT, a

team only needs these applications and reasonably

equipped PCs. Proprietary or exotic OEM components

are not required. Delivering value in M&S is much

easier when the software tools are common and quickly

understood by most of the project team.

MVVM AND ARINC 661

As Instructor Support developers, we’re not familiar

with standards associated with avionics, the equipment,

or its detailed function. The Deep Model simulation is

abstracted away for us into integer, floating point,

Boolean, and character values. However, the driving

business decision for using .NET and MVVM is

familiarity. It’s worth taking a diversion into an

avionics-heavy architecture, ARINC 661 (2010), to see

its notable similarities to MVVM.

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2012

2012 Paper No. 12120 Page 6 of 10

The tool we used for the AT-6 displays, Microsoft

Expression Blend, augments the role of a designer in

utilizing a platform, but doesn’t clutter the design

markup with lots of domain knowledge. Should a

designer be thoroughly concerned about the platform?

The concern is whether tools for developing ARINC

661 systems will enable a flexible workforce, or play to

the strengths a specific domain like avionics.

The review of ARINC 661 presented here is simply to

confirm and not necessarily validate MVVM as a

viable architecture for developing simulated cockpit

displays. The impetus is to single out a pattern shared

by a similar domain (human factors engineering) but

with a very different implementation and platform.

Cockpit Display System

ARINC’s Cockpit Display System (CDS) is analogous

to the View of MVVM. It has the primitive elements of

the visual display that together make up the windows,

layers, and widgets. This is what the pilots see. Refer to

Figure 6.

User Application

ARINC’s User Application (UA) is analogous to the

Model of MVVM and also to the Deep Model.

Although UA code can be in any language, our

separation of Model and Deep Model allows for similar

decoupling of presentation and processing. ARINC

doesn’t impose many constraints on the UA other than

its required use of the ARINC 661 runtime protocol.

Definition Files

Definition files for 661 displays are stored in XML

format while MVVM utilizes WPF’s Extensible

Application Markup Language (XAML). Refer back to

Figure 2 for an example of XAML markup.

Widgets

ARINC widgets are the visual elements used on the

CDS. These are equivalent to controls in the .NET

framework. WPF allows any control to have a unique

appearance and even update that appearance

dynamically at runtime. This is analogous to the

ARINC 661 StyleSet. Where the two substantively

break is in MVVM’s flexibility to go beyond the

cockpit display itself. For the AT-6’s DTT, the entire

cockpit area is simulated down to the buttons, switches,

knobs, and other indicators as seen in Figure 1.

The specification for .NET-based controls is very loose

with respect to WPF. Only events, properties, and

fields defined by the controls are relevant. Thus, a

.NET button can look exactly like an AT-6 circuit

breaker when the correct XAML is applied.

A WPF MAP CONTROL

The FalconView map control provides a concrete

example that WPF helped fulfill a critical part of

modern glass cockpit displays. FalconView is the map

application that is part of the Portable Flight Planning

Software (PFPS) suite of applications used for mission

planning. It was created by the Georgia Tech Research

Institute for the U.S. Department of Defense.

FalconView is in active development and, as of 2008,

is also available to the public as open source software

(FalconView, 2012).

Messages

to Widgets

Events from

User

Cockpit Display System

(CDS)

User Application

(UA)

ARINC 661

Runtime

Protocol

Definition

Binding to

Source Data

Binding from

Target Control

MFD

View

MFD

Model

MVVM

.NET

Data

Binding

Host Simulation with

Avionics Deep Model
Other Avionics Systems

Windows

PC

Embedded

System

Mission

Computer

or

Realtime

Simulation

PCRealtime

Simulation

PC

TCP

TCP

Ethernet/Serial

Ethernet/Serial

Figure 6. MVVM and ARINC 661

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2012

2012 Paper No. 12120 Page 7 of 10

Our Instructor Support group is accustomed to working

with PFPS and specifically FalconView. Thus, it was a

natural candidate for integrating with the MFDs as a

moving map control.

FalconView primarily functions as a stand-alone

application with a complete UI. However, its attraction

lies with the ability to load plug-ins via Microsoft’s

Common Object Model (COM). We frequently use

FalconView to provide tactical awareness to the

instructors. We process the synthetic environment and

overlay data on the map with threats and navigation

data. These plug-in assemblies are completely written

in .NET C#.

Problem

FalconView’s strength is its ability to load different

map data types, cache, scale, and project the imagery

with great accuracy and precision. Notably, the UI can

be separated from the map control. Integration with

WPF implies two steps:

1. Create a .NET control that uses the Graphics

Device Interface (GDI) to render the imagery

2. Use a built-in .NET control that wraps legacy

controls so it will integrate with WPF.

The approach listed above worked but GDI was simply

too slow. Additionally, the map rotation would cause

the instance of the SQL server it uses for map data

lookups to jump in CPU usage. When the aircraft

yawed left or right, the moving map would lag with

unimpressive results.

Solution

One of WPF’s strength lies in its graphics backbone.

Scaling, rotating, and translating are all possible and

are frequently used to manipulate MFD objects. We

utilized this strength as the starting point.

The goals of this new control were the avoidance of

GDI and reduced impact on the SQL server. Utilizing

the translation and rotation methods of WPF, the

control simply exploited FalconView as a map data

loader and provider.

There is moderate lag when requesting a tile of map

data from FalconView. For example, the grid of 25

map squares shown in Figure 7 would only take two

seconds to load. However, to avoid showing this tiling

effect, our WPF map control caches the tiles well

before they’re displayed (shown in high contrast).

 Figure 7. Map Rotation and Tiling

(Only the center area is visible on the MFD)

Moving map rotation is accomplished by rotating the

set of tiles. Map translation is done similarly but the

tiles are shifted up, down, left, or right so no additional

tiles beyond the 25 are allocated.

All tiles are WPF Canvas objects, which are assigned

the appropriate map image from a dedicated request

thread.

Moving map brightness is the most trivial of all map

objects to control. A WPF Rectangle object has the

highest z-order and its opacity is adjusted based upon

the desired brightness, where higher opacity results in a

darker map.

Figure 8. MFD Moving Map Page with Overlays

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2012

2012 Paper No. 12120 Page 8 of 10

Minimal code is necessary to embed the control (refer

back to Figure 2). The designer does not have to be

concerned with the esoteric details of what the map

control looks like–only what bindings to associate with

its properties. The resulting MFD with a map display is

shown in Figure 8.

As the next section will explain, knowledge about how

those bindings are determined is a collaborative effort.

Freedom from code does not imply ignorance of its

limitations. The key is collaboration–mutual interest in

the data.

MEETING IN THE MIDDLE

All software processes should seek to enable better

communication from inception to delivery. One way to

enable communication is to structure the software in a

way that ensures collaboration, reduces confusion, and

therefore speeds development. Fortunately, there is a

way to do this and we call it ―meeting in the middle.‖

It’s an oasis where similar and dissimilar minds can

meet. Boehm and Turner show that in pair

programming scenarios, costs are 10-25% higher than

using a single developer. However, development time

is approximately 45% lower (as cited in McConnell,

2004, p. 480). Time, as mentioned earlier, was a

concern on this project.

Industry Motivation

Tufte (2002) argues that for more sophisticated

graphics, professional artists need more quantitative

skills. This is logical but the process of integrating two

distinct skill sets needs to begin somewhere.

Work by Tapp, Chartrand, and Campeau (2011)

illustrate the goal of designing a cockpit display with

artists and subject matter experts. They divide the work

into view and model where the model, vis-à-vis this

paper, appears to be the Deep Model.

Web design templating, which tried its best to hide

business logic from the artist, gave way to general

acceptance by the web community that software

developers and visual designers cannot be blissfully

ignorant of the other’s thought process. The use of

templating has been avoided by the most widely

adopted blogging tool, WordPress, because the

underlying web site code tends to creep outward and

into design markup.

Improving expertise, tools, and software architecture

broadly describe those areas that demand attention

between designers and software developers. It’s worth

examining how our team addressed this collaboration

vis-à-vis instructor applications and the AT-6 project.

Fostering Collaboration

We found that most C++ and even C software

developers have found C# to be close enough to

understand. All of our instructor applications are

written in C# and the MFDs are no different. The

expansive set of .NET classes usually befuddles

avionics engineers new to .NET, rather than the

language syntax itself. Commonly understood tools are

important and using Microsoft Visual Studio, a familiar

IDE, meant there was one less barrier to achieving

productivity.

Developing an instructor application typically involves

a lot of question/response with system engineers—

domain experts—who understand the aircraft or

synthetic environment. However, there’s a bit of

latitude for the designer when constructing a page for

the instructor. Layout, formatting, and how a system is

simplified to quickly execute a procedure is largely the

designer’s job and part customer feedback. For cockpit

displays, this was not the case. We had to play to the

strengths of both engineer and designer (see Figure 9).

Using test pilots to validate the system was, in the case

of the AT-6, critical in terms of how well the

instruments were represented visually and functionally.

View

Model

Deep Model

Increasing

Avionics

Experience

(M&S)

Increasing

Artistic

Experience

(Design)

Figure 9. Process by Ability

Our Instructor Support engineers have a good deal of

software coding experience, but the key feature of this

process is that gradations of expertise are built into the

structure of the software. Maybe you have employees

who want little to do with code but are brilliant

graphics designers who can quickly draw MFD

displays. They can design the View and gradually

delve into more complex, domain-specific code starting

with the Model. An n-tier architecture is advantageous

in a scenario where there are a large number of

specialized professionals working on one tier of a

larger software project. However, the architecture

should allow for those individuals to cooperate and

expand their expertise, if they choose.

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2012

2012 Paper No. 12120 Page 9 of 10

The Model is developed by the Avionics and Instructor

Support teams. In fact, our source control records

indicate multiple check-ins of the Model by the

Avionics team, but predominantly by the Instructor

Support team.

Because the Model is mostly a façade, or simplification

of the Deep Model, it makes sense for the Avionics

engineer to collaborate on its design. The Instructor

Support engineer doesn’t own the file, but is the

primary developer of its capabilities – she understands

what data is necessary to adequately supply the View

with colors, positions, and other data that it needs to

render a control. However, its development along with

the avionics domain expert is critical.

Finding the middle ground is easier when there’s an

actual file in which to base the discussion. Thus,

collaboration is an architectural necessity that allows

both sides to have a shared stake in the outcome, yet

acknowledges both sides have a specialized area of

expertise.

Our development process followed a cyclic but reliable

pattern that gave Instructor and Avionics developer

time to do domain specific work, but also focus on a

common effort. Figure 10 shows one cycle, where the

goal of the cycle is to produce working software.

Classes are commonly named so that both sides

understand their purpose and can trace back where to

find a control on a display. For example, to find the

View associated with the EICASModel class, the

developer need only search for the EICASWindow

class. Logical naming conventions were another means

to reduce confusion and allow developers and

designers to write software and design visual elements

that work together.

Deep Model View

Model

Deep Model Model

Model

Avionics Engineer

works on...

Instructor Support Engineer

works on...

Both sides

collaborate on...

TestingTesting

Testing

T
IM

E

T
IM

E

Figure 10. Using the Model as the Middle

RESULTS

After a couple development iterations we produced a

functional AT-6 cockpit and MFDs that proved to us

the technology (WPF), architecture (MVVM), and the

process (agile) can produce results. Costs were kept

low by using flexible tools: Microsoft Visual Studio

and Expression Blend. Shortly after development

started, it was decided the same technology and process

were good enough to develop the AT-6’s Heads-up

Display (HUD). The HawkerBeech test pilots were

convinced that the execution of the project was on the

right track.

As the program reached a development plateau the

trainer was stable enough to demonstrate at the 2011

Paris Air Show and subsequent trade shows, including

I/ITSEC.

Areas of expertise such as FalconView and the Deep

Model of avionics software are not common outside of

the M&S industry. Finding the right people for these

skills implies graphic design and software development

experience is necessary but not sufficient. Establishing

areas for these specialists to meet in the middle, with

pair programming or other agile processes, can reduce

the time needed to create working software.

The results presented in this paper are focused on a set

of Microsoft products and the Windows platform,

which could be a disadvantage to many organizations

that prefer an alternative solution, i.e. the Linux OS.

When designers and developers can choose the tools

that work best, switch tools, and upgrade them, the

platform becomes a lesser concern. The market has

responded and there are many different non-Microsoft

XAML designer applications similar to Expression

Blend. Choices are out there.

THE FUTURE

The AT-6 DTT, as developed by Avionics and

Instructor Support engineers and designers, represents

the recreation of a real aircraft into a purely software

construct. The question that should drive the 21
st

century of M&S, is how to use a growing population—

a global force—for making better software. Does M&S

simply iterate on existing software patterns, or can it

formulate its own using a wide spectrum of knowledge

workers?

According to the U.S. Bureau of Labor Statistics

(2012) the estimated employment numbers from 2010

to 2020 for Graphic Designers will increase by 30.6%

in the field of ―Professional, scientific, and technical

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2012

2012 Paper No. 12120 Page 10 of 10

services.‖ The increase for Software Developers is

even more astounding at 52.2%. This means there will

be ever more graphic designers ready to help distill the

data-fueled M&S industry for years to come.

It’s a challenge for management and an opportunity for

the industry to shakeup traditional means of creating

software. Shedding rigid definitions of what software

tools are needed and what people and skills are

required may balance the scales for M&S businesses to

be equal parts design and engineering.

REFERENCES

Boehm, B., & Turner, R. (2004). Balancing agility and

discipline: A guide for the perplexed. Boston, MA:

Addison-Wesley.

Cohen, G. (2010). Agile excellence for product

managers. Cupertino, CA: Superstar Press.

Collins, J.C. (2001). Good to great: Why some

companies make the leap…and others don’t. New

York, NY: HarperCollins Publishers.

McConnell, S. (2004). Code complete: A practical

handbook of software construction (2
nd

 ed.).

Redmond, WA: Microsoft Press.

Tapp, M., Chartrand, S. & Campeau, J-F. (2011).

Experiences in Leveraging M&S Expertise by Hiding

Software Complexity. Proceedings from I/ITSEC

2011 Conference: Paper #11236.

Tufte, E.R. (2002). The visual display of quantitative

information (2
nd

 ed.). Cheshire, CT: Graphics Press.

―ARINC 661 Cockpit Display System Interfaces to User

System‖ ARINC Specification 661-4. May 2010.

ARINC, Inc. www.arinc.com.

Data Binding Overview. (2012). Retrieved April 10,

2012 from http://msdn.microsoft.com/en-us/library/

ms752347.aspx.

FalconView. (2012). Retrieved April 10, 2012 from

http://www.falconview.org.

 U.S. Bureau of Labor Statistics. (2012). Employment by

industry, occupation, and percent distribution, 2010

and projected 2020. Standard Occupational

Classification 15-1132 & 27-1024. Retrieved April

10, 2012 from http://www.bls.gov.

Smarty Manual. (2012). Retrieved April 10, 2012 from

http://www.smarty.net/files/docs

/manual-en-2.6.pdf

